

Don't Throw Paving Dollars Out with the Trash

2023 CEAC Spring Conference March 9, 2023

Moderator: David A. Leamon, Stanislaus County

Speakers:

Margot Yapp, NCE
Lisa Petersen, City of Pacifica
Debaroti Ghosh, NCE

INTRODUCTION

 Many local agencies throughout the country are seeing discouraging declines in the network pavement condition.

- Influencing Factors
 - Increased construction costs
 - Projects delayed to COVID
 - Insufficient funding

EXAMPLE: CALIFORNIA

FUNDING SOURCES

Federal

- Regional Surface
 Transportation Program
 (RSTP)
- Community
 Development Block
 Grant (CDBG)
- Surface Transportation Program (STP)
- Bipartisan
 Infrastructure
 Investment and Jobs
 Act (IIJA)

State

- Gas Tax
- Transportation
 Development Act (TDA)
- State Transportation Improvement Program (STIP)
- Vehicle Registration Fees
- CalRecycle
- Traffic Congestion Relief Fund

Local

- General Fund
- Local Transportation
 Fund
- Parcel Tax
- Sales Tax/Local Measure
- Impact Fees
 - Development
 - Waste Vehicle
 - Utility Cut

IMPACT FEES TO COMPENSATE FOR PAVEMENT DAMAGE

Pavement Damage = Higher Maintenance Cost

Utility Cuts

Asphalt

Subgrade

Base

3. Increased Surface Roughness

Heavy/ Waste Vehicles

HOW TO DEVELOP IMPACT FEES

- Agency specific study needs to be conducted
- Fee development depends on
 - Network Size
 - Existing Pavement Condition
 - Subsoil Properties
 - Pavement Layer Thicknesses
 - Available Funding Level
 - Vehicle Frequencies/Routes (Vehicle Impact Fee)
 - Utility Cut Restoration Practice (Utility Cut Fee)

CASE STUDY: BACKGROUND AND OVERVIEW

[Condition Category]

- City responsible for 90 centerline miles streets
- Oct. 12, 2020 Council Mtg. 5-year street maintenance program and study to identify pavement impact fees approved
- Metropolitan Transportation Commission (MTC) consultant report- Pacifica streets in poor condition and dropping

CASE STUDY: BACKGROUND AND OVERVIEW

- CITY OF PACIFIC
- Recent MTC Bay Area pavement report showed Pacifica with lowest PCI of all 101 Bay Area cities (nine counties)
- Current City Yearly Pavement Funding Level:
 - State Senate Bill 1 and County Measure W = ~\$1,040,000
 - City rollover Measure A = \$350,000 (will end in FY24/25)
- To stop PCI decline:
 - City must identify new additional funding of \$900,000 by Fy22/23
 - This need will increase to \$1,250,000 by FY24/25
- To increase PCI, money beyond this is required

CASE STUDY: HOW PAVEMENTS DETERIORATE

CASE STUDY: PACIFICA STREET CONDITIONS

City of Pacifica- Impact Study

VEHICLE IMPACT FEE STUDY: QUESTIONS

- Waste-vehicle repetitions on local roads and streets have increased
- Constructions have increased due to land development

 Question 1: What impact do waste and heavy construction vehicles have on pavement life?

Question 2: What is the corresponding financial impact?

VEHICLE IMPACT FEE STUDY: INFORMATION NEEDED

- Waste vehicle traffic information
 - Frequency/ type of vehicle

- Pavement structural information
 - Layer thicknesses by functional class

- PMS data for existing condition
 - Pavement condition index by functional class
 - Percent network in each condition category

Condition Category	PCI Range
Excellent	85-100
Very Good/Good	70-84
Fair	50-69
Poor	25-49
Failed	0-24

VEHICLE IMPACT FEE STUDY: PROCESS

Calculate waste vehicle traffic demand and pavement capacity in ESALs

(Equivalent Single Axle Load)

- Perform budget analysis using PMS software over an analysis period (i.e, 10 years or 15 years)
- Obtain condition category breakdown for each year
- Calculate impact in each condition category for each year

$$Impact = \frac{Traffic Demand}{Structural Capacity}$$

 Calculate equivalent cost /year = Impact * Annual Budget (or Budget goal)

WASTE VEHICLE IMPACT CASE STUDY: TRAFFIC DEMAND

Vehicle Type	Vehicles per Week				
venicie Type	Residentials	Arterials/Collectors			
Garbage	1	40			
Green Waste	1	30			
Recycling	1	40			
Bulky Waste	0.25	2.5			
Total	3.25	112.5			

Equivalent Single Axle Load (ESAL)
Residential Demand ≈ 300 ESALs/Yr
Art & Col Demand ≈ 11,000 ESALs/Yr

WASTE VEHICLE IMPACT CASE STUDY: PAVEMENT STRUCTURAL CAPACITY

Pavement Structure

• Res: TI of 5 ______ 7,161 ESALs

• Art/Col: TI of 7 _____ 121,021 ESALs

Calculation of Remaining ESALs based on pavement deterioration curve

Pavement Current Condition

Condition	% of Network in Condition Category				
Category	Residential	Arterial/Collector			
Excellent	1.4%	14.5%			
Good	9.1%	11.4%			
Fair	13.7%	22.6%			
Poor	28.7%	27.8%			
Failed	47.1%	23.7%			
Total	100.0%	100.0%			

ESALs Remaining Based on Condition Art/Col Res New Pavement 121,021 7,161 Capacity 6,950 116,847 5,054 83,462 2,948 45,904 842 12,519

WASTE VEHICLE IMPACT CASE STUDY: FINANCIAL IMPACT

- Residential Goal: Improve PCI to 60
- Arterial and Collector Goal: Improve PCI to 70

Total Budget = \$120.7 M Avg Budget = \$8.05M/yr

Avg Budget for Residential~ \$5M/yr

WASTE VEHICLE IMPACT CASE STUDY: EXAMPLE ANALYSIS

Example: Residential for Year 5

Condition Category	ESALs Remaining Based on Condition		
Excellent	6,950	X 31%	= 2,148
Good	5,054	12%	628
Fair	2,948	2%	50
Poor	842	3%	29
Failed	0	52%	0

Weighted Average= 2,855

Year 5

Impact (% Life Reduced) = 300 ESALs/2,855 = 10.5% Equivalent Cost for One Year = 10.5% x \$5M = \$525,000 These steps of analysis were conducted for each year

Average Pavement Life Reduced per year over 15 years:

- Residentials = 10.1%
- Arterials/Collectors = 6.1%

WASTE VEHICLE IMPACT CASE STUDY: FINANCIAL IMPACT

Average Cost of Pavement Damage per year:

- Residentials ~ \$511K
- Arterials/Collectors ~ \$184K

WHAT ABOUT HEAVY CONSTRUCTION VEHICLES?

- Cause approximately the same amount of damage in ESALs as a typical waste vehicle
- Construction of residential/non-residential units requires
 20 round trips to project site
 - Equipment
 - Materials
 - General home appliances
- Average route distance of 2.5 miles

PROPOSED HEAVY CONSTRUCTION VEHICLE IMPACT FEE

Based on the Study, the fee would be \$1.19/sf for residential/non-residential units

- 1,800 sf Single Family Home Fee = \$2,126
- 800 sf Multi-Family Residential Fee = \$952

CASE STUDY: SUMMARY

- 10.1% of a **residential** street's pavement life is consumed each year by waste vehicles. This corresponds to an average damage cost of \$510,906 per year.
- 6.2% of an **arterial or collector** street's pavement life is consumed each year by waste vehicles. This equates to an average damage cost of \$183,963 per year.
- Proposed Heavy Construction Vehicle Impact Fee:
 - \$1.19/sf for residential/non-residential units
- Any implemented fee structures should include an inflation factor

HEAVY VEHICLE IMPACT STUDY: TYPICAL FEE RANGES

Agency	Criteria	Fee	Reference	
	Single Family Unit	\$2,029 per unit		
Anaheim	Multi-Family	\$1,297 per unit	City of Anaheim 2020	
	Commercial/Industrial	-		
	Single Family Unit	\$1,434.12 per unit	City of Cityman Hairahta	
Citrus Heights	Multi-Family	\$1,312.74 per unit	City of Citrus Heights 2021	
	Commercial/Industrial	\$4.45 per sf		
	Single Family Unit	\$4,615 per unit	Farmania & Diamaina	
San Bruno	Multi-Family	\$2610 per unit	Economic & Planning Systems, Inc., 2019	
	Commercial/Industrial	\$6.95 per sf	5,500ms, 1mon, 2015	
	Single Family Unit	-	City of Can Francisco	
San Francisco	Multi-Family	\$9.95 per sf	City of San Francisco 2021	
	Commercial/Industrial	\$19.48 per sf	2021	
	Single Family Unit	\$5003.76 per unit	City of Can Maton	
San Mateo	Multi-Family	\$3,071.42 per unit	City of San Mateo	
	Commercial/Industrial	\$5.40 per sf	2021	
	Single Family Unit	\$697 per mile		
Santa Cruz County	Multi-Family	\$097 per fille	NCE 2015	
	Commercial/Industrial	-		
	Single Family Unit	\$0.77 per \$100		
Saratoga	Multi-Family	valuation	CSG Consultants 2007	
	Commercial/Industrial	-		

UTILITY CUT IMPACT STUDY: QUESTIONS

• Question 1: How do utility cuts affect pavement performance?

 Question 2: If pavement performance is reduced, what is the corresponding financial impact?

UTILITY CUT IMPACT STUDY: PROJECT OUTLINE

HISTORICAL EVALUATION

Functional Deterioration

Data Harvesting from PMS

- Inspection History
- Maintenance History

Analysis

- No-Cut and Cut PCI Comparison
- Reduction in Service Life
 Calculation and Comparison

Fee Calculation

FIELD EVALUATION

SITE SELECTION

Functional Deterioration

Field Data Collection

Distress Survey

Analysis

- PCI Calculation and Comparison
- Reduction in Service Life
 Calculation and Comparison

Fee Calculation

Structural Deterioration

Field Data Collection

- Deflection Testing
- Coring

Analysis

- Deflection Comparison
- Overlay Design and Comparison

Fee Calculation

FEE SCHEDULE DEVELOPMENT

UTILITY CUT IMPACT STUDY: HISTORICAL EVALUATION PROCESS

Fuctional Class		Aeterials/Collectors			Residentials	
No-Cut	Cu		No Cut	Cut		No-Cut
t Size	Large Cut	Small Cut	No-Cut	Large Cut	Small Cut	No-Cut
0-5						
6-10						
11-15	Avera	age PCI f	or avail	able dat	a set	
16-20						
>20						
	No-Cut t Size 0-5 6-10 11-15 16-20	No-Cut Cut Size Large Cut 0-5 6-10 11-15 16-20 Cut Average Aver	No-Cut Cut t Size Large Cut Small Cut 0-5 6-10 11-15 16-20 Cut Small Cut Average PCI f	No-Cut	No-Cut	No-Cut Cut No-Cut Cut Large Cut Small Cut Large Cut Small Cut 0-5 6-10 11-15 16-20 Cut Large Cut Small Cut Small Cut Large Cut Large Cut Small Cut Large Cut Small Cut Large Cut Small Cut Large Cut Small Cut Large C

UTILITY CUT IMPACT CASE STUDY: HISTORICAL EVALUATION -DETERIORATION CURVES

Cuts sections deteriorate more rapidly than no-cut sections within all age groups

Cuts sections deteriorate more rapidly than no-cut sections for pavements less than 15 years old

Pavement with cuts deteriorate faster

UTILITY CUT IMPACT CASE STUDY: HISTORICAL EVALUATION- CUT VS NO-CUT PCI

DETERIORATION BY FUNCTIONAL CLASS, AGE GROUP, AND CUT SIZE

Newer pavements and large cuts show greater deterioration

UTILITY CUT IMPACT CASE STUDY: HISTORICAL EVALUATION- CUT VS NO-CUT PCI

What does 30% Reduction in PCI Mean?

- Large Cut is Critical in Pavement Deterioration
 - Drops in Condition Category

UTILITY CUT IMPACT CASE STUDY: HISTORICAL EVALUATION- REDUCTION IN SERVICE LIFE

Example

FC: Arterials/Collectors

Age Group: < 10 years

Cut Size: Large

Equivalent Years of Life

Reduced: 19-2 = 17

% Reduction in Functional

Life: 17/29.5 = 58%

The analysis was performed for each combination (FC/Age Group/Cut Size)

UTILITY CUT IMPACT CASE STUDY: HISTORICAL EVALUATION- REDUCTION IN SERVICE LIFE

IMPACT OF AGE AND CUT SIZE

- 1. % Reduction in Life is higher when the pavement is new
- 2. The bigger the cut, the greater the % Reduction in Life

UTILITY CUT IMPACT CASE STUDY: HISTORICAL EVALUATION- FEE DEVELOPMENT

% Reduction in Pavement Life							
Functional Class	Age Group	Cut A (% of Sect					
		Small Cut	Large Cut				
Arterials/	<10 years	25%	55%				
Collectors	≥10 years	10%	25%				
Docidontial	<10 years	15%	40%				
Residential	≥10 years	2%	35%				

Treatment Type: Mill and Overlay Unit Cost

Arterials/Collectors: \$6.25/SF Residentials: \$5.25/SF

Fee, \$/SF= Unit Cost * % Reduction in Pavement Life

Fees, \$/SF							
Functional Class	Age	Functional Evaluation					
FullCtional Class	Group	Small Cut	Large Cut				
Arterials/	<10 years	\$ 2.50	\$ 4.00				
Collectors	≥ 10 years	\$ 1.50	\$ 2.50				
Residentials	<10 years	\$ 1.50	\$ 3.00				
	≥ 10 years	\$ 1.00	\$ 2.50				

UTILITY CUT IMPACT STUDY: FIELD EVALUATION PROCESS

If No PMS Database

FIELD EVALUATION

SITE SELECTION

Functional Deterioration

Field Data Collection **Distress Survey**

Analysis

- PCI Calculation and Comparison
- Reduction in Service Life Calculation and Comparison

Structural Deterioration

> Field Data Collection

- **Deflection Testing**
- Coring

Analysis

- **Deflection Comparison**
- Overlay Design and Comparison

Fee Calculation

Fee Calculation

UTILITY CUT IMPACT STUDY: FIELD EVALUATION- SITE SELECTION

PAIR OF SECTIONS OF SAME LENGTH FOR EACH SITE

UTILITY CUT IMPACT STUDY: FIELD EVALUATION – STRUCTURAL DETERIORATION

- Falling Weight Deflectometer is an impact load device
- Delivers an impulse load to pavement
- Measures the resultant deflection
- Higher the deflection, weaker the pavement
- Drops on the "Cut"
- Drops 2-ft away from the "Cut": Zone of Influence
- Drops more than 10-ft away from the "Cut": No-Cut Section

Deflection is higher/pavement is weaker near the Cut

UTILITY CUT IMPACT CASE STUDY: FIELD EVALUATION – STRUCTURAL DETERIORATION

OVERLAY
THICKNESS
DESIGN USING
DEFLECTION DATA
AND CORE DATA

OVERLAY THICKNESS COMPARISON

(CUT VS NO-CUT SECTION FOR EACH SITE)

of sites exhibit structural damage

of sites exhibit structural improvement

UTILITY CUT IMPACT CASE STUDY: FIELD EVALUATION – FEE DEVELOPMENT

MAXIMUM DAMAGE COST OF

STRUCTURAL EVALUATION

OVERLAY
THICKNESS COST

FUNCTIONAL EVALUATION

OF REDUCED
FUNCITIONAL LIFE

Site ID	FC	EVA Ove	RUCTURAL ALUATION Thicker erlay Cost (\$/SF)	Co	UNCTIONAL VALUATION st Equivalent Reduced Life (\$/SF)	x Damage ost (\$/SF)
Mace	Α	\$	2.47	\$	3.17	\$ 3.17
Fst	Α	\$	-	\$	0.41	\$ 0.41
5th	Α	\$	-	\$	0.37	\$ 0.37
John	Α	\$	-	\$	-	\$ -
Anderson	Α	\$	-	\$	0.88	\$ 0.88
Covell 1	Α	\$	-	\$	0.74	\$ 0.74
Covell 3	Α	\$	1.28	\$	1.00	\$ 1.28
Covell 2	Α	\$	-	\$	1.50	\$ 1.50
2nd	С	\$	-	\$	0.20	\$ 0.20
Oak	С	\$	2.98	\$	0.47	\$ 2.98
Hamel	С	\$	-	\$	0.10	\$ 0.10
Sycamore	С	\$	2.40	\$	0.61	\$ 2.40
Calaveras	С	\$	1.24	\$	-	\$ 1.24
Marina	С	\$	2.98	\$	0.20	\$ 2.98
Chiles	С	\$	1.24	\$	0.49	\$ 1.24
14th	С	\$	1.24	\$	-	\$ 1.24
Drake	R	\$	1.13	\$	2.08	\$ 2.08
S Campus	R	\$	1.13	\$	1.06	\$ 1.13
Tamarack	R	\$	-	\$	0.35	\$ 0.35
Brown	R	\$	2.70	\$	0.30	\$ 2.70
Wake	R	\$	2.70	\$	0.29	\$ 2.70
Pine	R	\$	1.65	\$	-	\$ 1.65
Colby	R	\$	-	\$	0.36	\$ 0.36
Willow	R	\$	-	\$	0.07	\$ 0.07

RECOMMENDED DAMAGE FEE SCHEDULE

Functional Class	PCI	Recomm	ended D	ama	ge Fee (\$	/SF)
runctional Class	PCI	Avg			Max	
Arterial	All	\$	1.04	\$		3.17
Collector &	> 70	\$	1.14	\$		2.08
Residential	< 70	\$	1.51	\$		2.98

CUT-OFF PCI WAS DECIDED BASED ON STATISTICAL ANALYSIS

UTILITY CUT IMPACT CASE STUDY: FEE IMPLEMENTATION (LARGE CUT)

Residentials
Age Group: 0-10 Years

If Area of Cut ≥ 10% of section area or block area

Total Recovery Fee = \$/SF x Total Section or Block Area

\$3*(700*30) = \$63,000

Montezuma Dr

Reina Del mar

Rosita Rd

UTILITY CUT IMPACT CASE STUDY: SUMMARY

- Pavements with cuts deteriorate faster.
- Large cuts (>10% of section area) show PCI drops of 30%.
- Utility cuts do more damage to new pavements (<10 years)
- Reduces pavement life by 33%.

Fee, \$/SF						
Functional	Age Group		Area ction Area)			
Class		Small Cut	Large Cut			
Arterials/	<10 years	\$ 2.50	\$ 4.00			
Collectors	≥10 years	\$ 1.50	\$ 2.50			
Residential	<10 years	\$ 1.50	\$ 3.00			
Residential	≥10 years	\$ 1.00	\$ 2.50			

Information Needed Functional Class

Age of the pavement

Area of the section

Area of the cut

UTILITY CUT IMPACT STUDY: TYPICAL FEE RANGES

Agency	Criteria	Fee Range, \$/SF
Davis (2022) (Preliminary Fee Schedule) Developed by NCE	Functional Class and PCI	\$1.04 - \$1.51
Anaheim (2022) (Implementation in Progress) Developed by NCE	PCI	\$3.60 - \$11.60
Ukiah (2021) (Implementation in Progress) Developed by NCE	Functional Class, Size of Cut, Age of Pavement	\$0.50 - \$4.25
Pacifica (2021) Developed by NCE	Functional Class, Size of Cut, Age of Pavement	\$0.50 - \$4.00
City and County of San Francisco (1998)	Age of Pavement	\$1.00 - \$3.50
Sacramento County (1999), Elk Grove (2020), Santa Cruz (2003)	Trench Depth, Functional Class, PCI, Type of Cut	\$1.80 - \$3.90 (Longitudinal Cut and Trench Depth <4ft) \$2.36 - \$7.80 (Transverse Cut and Trench Depth <4ft) \$1.80 - \$5.91 (Longitudinal Cut and Trench Depth >4ft) \$3.60 - \$11.82 (Transverse Cut and Trench Depth >4ft)
Sacramento (1997) 2022 Under revision by NCE	Type of Cut, Pavement Age	\$1.00 - \$3.50 (Longitudinal Cut) \$2.00 - \$7.00 (Transverse Cut)
Santa Ana (1999)	Functional Class and Age of Pavement	\$6.21-\$13.68
Los Angeles (2018)	Functional Class	\$8.24-\$19.44

NEXT STEPS

- Waste Truck Fee During franchise agreement negotiations, City's solid waste hauler agreed to pay some fees related the study findings
- Heavy Construction Vehicle and Utility Cut Fee

 Recommendation/discussion w/Council at Fee Schedule Adoption w/justifiable fee reductions and implemented
- Impact Fee Projections:
 - Waste Truck Fee up to \$465,000 yearly
 - Heavy Constr. Truck Fee \$10,000 to \$60,000 yearly*
 - Utility Cut Fee \$100,000 to \$200,000 yearly*
 - *Based on level of development/utility work

RECOMMENDATION FEE REDUCTIONS

- Fees can be lowered for development(s) if justifiable w/Council policy
- Adopted fee modifications:
 - ADUs under 750 sf would not be charged. Over 750 sf would not be charged if constructed with new/expanded main unit that has paid fees, as needed
 - Partially/fully credit Utility Cut fees for developments paving road frontage
 - Reduce Utility Cut Fee to \$500 for sewer lateral repairs not requiring a Lateral Compliance Certificate

WHAT ARE THE CHALLENGES?

- Consider
 - Ensuring a reliable dataset with good historical data
 - Documentation of Agency's historical practices
 - Comparison with other agencies
 - Legal challenges depending on state laws

Discussion and Questions?

