Approaches for Delivering More Sustainable and Multi-Functional Pavement

John Harvey
City and County Pavement Improvement Center
UC Davis

23 March 2022
Public Works Officers Institute
Monterey, CA
The future of local government pavements will be more sustainable and multi-functional

- Public expectations are for more sustainable and multi-functional pavements
 - State and local legislation
 - Public comments
- More sustainable:
 - Less greenhouse gas
 - Less air pollution
 - Less stormwater pollution
 - Less virgin material use
- Multi-functional:
 - Bicycles
 - Cool pavement
 - Permeable pavement

- To avoid unintended negative consequences, we must consider:
 - Full system
 - Full life cycle
Overview of How to Get More Sustainable and Multi-Functional Pavement

• Sustainability = making pavement last longer for less money and reducing pollution:
 • Better use of pavement management system to select and time treatments
 • Smoother pavement
 • Better asphalt compaction
 • Rubberized asphalt

• Making pavement multi-functional:
 • Pavement management of bike routes
 • Pavement for human thermal comfort
 • Consideration of permeable pavement
Impacts must consider **full life cycle** and **full system**

Which treatment has more environmental impacts?

- **Treatment A:**
 - Impact = 1,000 tons greenhouse gas per year across the preservation program from materials production, transportation, construction
 - Lasts 8 years

- **Treatment B:**
 - 20% less initial impact than Treatment A
 - Lasts 5 years

- **Impact comparison over 20 year analysis period:**
 - Treatment A: 20,000 tons of GHG
 - Treatment B: = 20,000 tons*(1-0.2)*8/5 = 25,600 tons of GHG

- **Conclusion:** Treatment A produces less impact over the life cycle
Action: Separate into segments with/without heavy vehicle (bus, truck) traffic
Focus on distresses that control pavement life in cracking-based decision trees

- Fatigue cracking and potholes caused by heavy loads:
 - Alligator cracking
 - Potholes
- Cracking caused by aging:
 - Longitudinal and transverse cracking
 - Joint reflections
 - Block cracking

- Other distresses
 - Low ride quality
 - Bleeding
 - Bumps and sags
 - Corrugations
 - Depressions
 - Edge cracking
 - Lane/shoulder drop-off
 - Patching and utility cut patching
 - Polished aggregate
 - Rutting
 - Shoving
 - Slippage cracking
 - Swelling
 - Weathering and raveling

Use these distresses rather than PCI
Alligator Cracking aka Fatigue Cracking aka Wheelpath Cracking
Treatment for load related fatigue cracking

- Fatigue cracking becomes alligator cracking, and eventually forms potholes
- Surface treatments will slow a little, but mostly helps with block cracking, not fatigue
- Will need to do periodic mill and fill with digouts of localized deep cracking
- Mill and fill may not be cost-effective once alligator cracking is extensive
 - Consider partial-depth or full-depth reclamation (FDR) cold in-place recycling depending on crack depth
- Do not let wheelpath cracking become extensive or must reconstruct

Extensive and likely deep alligator cracking, Starting to form potholes
Aging of the Asphalt

- Aging of the asphalt
 - Caused by oxidation, volatilization
 - Faster if high permeability and temperature
 - Permeability greatly reduced with better asphalt compaction

- Effects
 - Stiffening of mix with time
 - Won’t relax stresses from thermal contraction as well

Aging
mostly done by 5 years after placement

Stiffness increase from aging

2 to 5 times stiffer, much more elastic, less viscous

Construction

Years
Age Related Cracking

- Typically caused by long-term aging of asphalt concrete and daily temperature cycling (expansion/contraction)
- May also be reflective cracking from shrinkage cracks in underlying asphalt, cemented base, or concrete
- Poor asphalt construction compaction allows air to enter and age the asphalt faster, accelerates aging

Good compaction limits entry of air and slows oxidation
Age related cracking: transverse then block
Treatment for age-related cracking

- Keep the surface protected from aging
- Can potentially use fogs, slurries or microsurfacings and never have cracking if no heavy vehicles
- What frequency?
 - After aging has progressed but no cracks
 - About 7 to 12 years
 - Before cracking starts
 - Do not let cracking get extensive
 - Doing more frequently than needed can be a waste
Actionable **now**: Timely use of preservation for age related cracking
Example for urban street

- **Timely** use of preservation treatments can postpone AC mill and fills
 - Timely = when beginning to age, before cracking
 - Usually about 7 to 12 years

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Approximate Metric Tons GHG/lane mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slurry Seal</td>
<td>4</td>
</tr>
<tr>
<td>2.0 inch HMA mill and fill</td>
<td>45</td>
</tr>
<tr>
<td>6.0 inch HMA remove and replace</td>
<td>161</td>
</tr>
</tbody>
</table>
LCCA and LCA results: Urban alternatives

- 50 year analysis, 2% discount rate
- Remove and replace:
 - 14% more cost
 - 60% more GHG
- Preservation:
 - 12% less cost
 - 27% less GHG

<table>
<thead>
<tr>
<th>Mill and Fill Scenario</th>
<th>$/sy</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA 2 inch mill and fill</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>HMA 2 inch mill and fill</td>
<td>38</td>
<td>20</td>
</tr>
<tr>
<td>HMA 2 inch mill and fill</td>
<td>38</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Remove and Replace Scenario</th>
<th>$/sy</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA 2 inch mill and fill</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>Remove, replace 6 inches HMA</td>
<td>52</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preservation Scenario</th>
<th>$/sy</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA 2 inch mill and fill</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>Slurry seal</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Slurry seal</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>Slurry seal</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td>HMA 2 inch mill and fill</td>
<td>38</td>
<td>33</td>
</tr>
<tr>
<td>Slurry seal</td>
<td>7</td>
<td>45</td>
</tr>
</tbody>
</table>

GHG adapted from A. Saboori doctoral thesis, 2020
Environmental Impacts over the Pavement Life Cycle
Actionable now: where to focus on smoother pavement

• Where to focus
 ▪ Lower traffic volume routes (<2500 veh/lane/day): bigger impacts are from materials, transportation, construction
 ▪ Higher traffic routes (>2500 vehicles/lane/day): bigger impacts from rolling resistance (roughness mostly)
Actionable now: Asphalt Compaction Quality Control
Effect of asphalt construction compaction on axle loads to cracking

General rule:
Load related cracking:
1% increase in constructed air-voids = 10% reduction in fatigue life under heavy loads

Age related cracking:
Similar effects on residential routes; more air voids = faster aging
How to Get Good Asphalt Compaction

- Include QC/QA construction air-void content specification in each contract
- Measure air voids as % of Theoretical Maximum Density
 - Not laboratory test maximum density
- Test strip, measure, communicate, enforce
- If using Caltrans or Greenbook method specification, likely getting 10 to 13% air voids = half of possible life from asphalt

Model specification on CCPIC web site!

Google: CCPIC
www.ucprc.ucdavis.edu/ccpic
Actionable **now**: use of thinner RHMA overlays

Greenhouse Gases HMA vs RHMA

- Same design for 10 year overlay on county road
- HMA strategy emits 26% more greenhouse gases than RHMA because of increased thickness

<table>
<thead>
<tr>
<th>Strategy for Overlays</th>
<th>Materials (MTons GHG)</th>
<th>Construction and Transport (MTons GHG)</th>
<th>Total (MTons GHG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 inch mill + 3 inch HMA with 15% RAP</td>
<td>1,650</td>
<td>505</td>
<td>2,155</td>
</tr>
<tr>
<td>1.25 inch mill + 2.25 inch RHMA</td>
<td>1,310</td>
<td>396</td>
<td>1,706</td>
</tr>
<tr>
<td>HMA/RHMA</td>
<td>1.26</td>
<td>1.28</td>
<td>1.26</td>
</tr>
</tbody>
</table>

Adapted from T. Wang doctoral thesis, 2013
Challenge for the Future: Multi-functionality

- Traditional goal:
 - Smooth pavement for vehicles at lowest cost
- Pavement dominates the urban landscape

Fractions of land area were measured above tree canopy

Sacramento

<table>
<thead>
<tr>
<th>Category</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavements</td>
<td>39%</td>
</tr>
<tr>
<td>Vegetation</td>
<td>29%</td>
</tr>
<tr>
<td>Roofs</td>
<td>19%</td>
</tr>
<tr>
<td>Other</td>
<td>14%</td>
</tr>
</tbody>
</table>
Challenge for the Future: Multi-functionality

• Actionable **now**:
 - Bicycles
 - Reconfigure to include bike lanes when restriping preservation treatments
 - Selection of treatments to improve bicycle ride quality
 - Minimize cracking and roughness through preservation
 - Cool pavement
 - Balance reflectivity to improve human thermal comfort
 - Stormwater
 - Consider permeable pavement
 - Quiet
 - Raveling and roughness increase noise
 - Manage through timely preservation
Consideration of Bicyclists When Choosing Preservation Treatments

• Caltrans sponsored study
• More than 100 riders surveyed state, county and city pavements
 ▪ HMA
 ▪ Slurry, microsurfacing
 ▪ Chip seals
• County and city roads
• Conclusions:
 ▪ Minimize cracking and roughness with preservation
 ▪ Do not select high texture seal coats
Cool and Reflective Pavement:
- Focus on human thermal comfort, not reduced electricity use
- Use cooler pavements with low GHG
- Reflective coatings have high GHG
- For thermal comfort must balance reflectivity
- Selection of street trees that are pavement-friendly

M is the metabolic rate (W/m²). W is the rate of mechanical work (W/m²). S (W/m²) is the total storage heat flow in the body.
Conclusions

• Better pavement practices can improve financial and environmental sustainability at the same time

• There are strategies that you can be implementing now!
 ▪ Pavement management based on load and age related cracking
 ▪ Timely preservation
 ▪ Keep high traffic volume routes smooth
 ▪ Better asphalt compaction
 ▪ Rubberized asphalt

• Multi-functionality
 ▪ Use preservation treatments on bike routes; restripe as part of preservation
 ▪ Choose appropriate seal coats for bicycles
 ▪ Cool pavements: select low GHG treatments, balance reflectivity for comfort, pavement-friendly street trees
 ▪ Consider permeable pavement